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Oceanic Internal Waves and Solitons

1. Introduction
Internal waves (IWs) are, as their name implies, waves that travel within the interior of a

fluid.  Such waves are most familiar as oscillations visible in a two-layer fluid contained in a
clear plastic box often sold in novelty stores.  In the box, two immiscible and differently colored
fluids fill the entire volume; when tilted or otherwise disturbed, a slow large amplitude wave is
observed to propagate along the interface between the fluids.  This is the internal wave and while
it has its maximum amplitude at the interface, its displacements are zero at the top and bottom.  It
owes its existence to the stratified density structure of the two fluids, with a very sharp density
change occurring along the interface and with the properties that the smaller the density contrast,
the lower the wave frequency, and the slower the propagation speed.  [Apel, 1987]

Similar modes exist within the geophysical fluids of the atmosphere and ocean.  Solar
radiation is absorbed in the near surface layers, resulting in warmer water and lower density in
that region and leading to a stratified fluid.  Upper ocean temperature and salinity gradients are
relatively sharp under most conditions and any excitation or disturbance of the pycnocline (a
zone within which seawater density changes maximally) will tend to propagate away from the
region of generation as an internal wave.  [Apel, 1987]

Internal solitary waves are important for many practical reasons.  They are ubiquitous
wherever strong tides and stratification occur in the neighborhood of irregular topography.  As
such, they are often prominent features seen in optical and radar satellite imagery of coastal
waters.  They can propagate over several hundred kilometers and transport both mass and
momentum.  Indeed, an early motivation for studying them was the unexpectedly large stresses
they imposed on offshore oil-drilling rigs.  They are often associated with a net change in
stratification in which form they constitute travelling internal undular bores.  Their propagation
carries with it considerable velocity shear that can lead to turbulence and mixing.  The mixing
often introduces bottom nutrients into the water column, thereby fertilizing the local region and
modifying the biology therein.

This Atlas of Oceanic Internal Solitary Waves contains case studies of some 32 examples
of internal wave manifestations.  These cases are just a sampling of the more than 75 areas of the
world where internal waves have been observed.  Most of the sites have been found through
surface signatures of an internal soliton group within remote sensing images.  In a few cases,
however, it has been in-situ data that has shown the existence of such waves.

The case studies include information on the spatial distributions of the solitons,
speculating on sources, characteristics (wavelengths, and speeds) and any available modeling or
analyses efforts.  Image types include: high-resolution satellite from synthetic aperture radar
(SAR), scanning radiometers, photographs from manned space flights, and photographs from
incidental aircraft flights.  Each of the images demonstrates surface signatures of coherent;
hence, distinctly recognizable internal waves.  In each instance within a case study, the data
usually includes an image that inspired the initiation of the study, some supporting data and
ancillary information, an analysis, and/or interpretations in terms of solitary wave models.  While
not advocating any particular model of internal solitary waves, included are Korteweg-de Vries
environmental parameters (α, γ, and c0) that have been evaluated from the available data and
useful in most any theoretical effort.  Supporting data include: bathymetric maps,
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temperature/salinity or density profiles for the approximate place and time of the image
acquisition (usually gleaned from data archives); and such current, or temperature-time series as
may be available.

The locales range over most of the oceans and seas of the world, although they are
dependent upon the seasons and the myriad of tidal cycles, as well.  The Atlas is intended to
show the ubiquitous nature of this phenomenon.  The internal waves appear wherever the
combination of stratified waters, currents, and bathymetry is correct; and the recurrence of the
signatures suggests that this combination occurs frequently within the seas.

2. The Nature of Solitary Waves
The particular type of IW most often seen is termed a solitary wave or soliton.  Solitary

waves are a class of nonsinusoidal, nonlinear, more-or-less isolated waves of complex shape that
occur frequently in nature.  These waves maintain their coherence, and hence visibility, through
nonlinear hydrodynamics and appear as long, quasilinear stripes in imagery.  The internal wave
signatures are made visible by wave/current interactions; wherein the near-surface current
associated with the internal wave locally modulates the surface wave height spectrum.  The
primary modulations typically occur at wavelengths ranging from a few meters down to perhaps
10 to 50 cm, but secondary interactions further transport surface wave energy down to sub-
centimeter scales.  Thus, a roughening of the short-wave portion of the surface wave spectrum
takes place in regions of internal wave phase where the currents are convergent.  At a distance of
one-half of an internal waves phase to the rear, the sea surface has been swept relatively clean of
surface wave energy, and the ocean in this phase region is very flat.

On the face of it, a “solitary wave” is a contradiction in terms because a wave is usually
considered a repeating, oscillating motion or force.  However, this terminology is deeply
embedded in the scientific literature, along with a less well known, but more discrete term,
sometimes referred to as a soliton.  The internal solitons existing in the ocean are usually
composed of several oscillations confined to a limited region of space.  For these, the term
“solitary wave packets” seems more appropriate and so shall be referred to in the main.
However, the other terms will also be used from time to time; hopefully, with no resulting
confusion.

3. Observations
The earliest recognition of internal wave phenomena appears to have been by J. Scott

Russell [1838, 1844] who reported on the formation of a single, unchanging hump or mound in
the shallow water of Scottish canal, generated when a towed barge was brought to a sharp halt in
the canal.  Russell followed the wave for several miles on horseback until he lost it in the
windings of the canal.  Later Korteweg and deVries [1895] derived some of the interesting
mathematical properties of such a wave and produced their now-famous soliton solutions.  The
attention given to solitary waves since has been in the main due to their strange and interesting
mathematical characteristics.  Recently, however, it has been the recognition of their wide-spread
occurrence in the ocean that has spurred geophysically oriented investigations, not only into the
internal hydrodynamics but on their attendant impacts on surface wave spectra, air-sea
interaction, remote sensing science, shallow-water acoustics, and coastal mixed-layer dynamics.

Reports of what are almost certainly surface manifestations of oceanic internal solitary
waves are centuries, if not millennia old, but their scientific study is more recent.  It has been
known for over 150 years that in the island archipelagos of the Far East, there are occasionally
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seen on the surface of the sea long, isolated stripes of highly agitated features that are defined by
audibly breaking waves and white water [Wallace, 1869].  These features propagate past vessels
at speeds that are at times in excess of two knots; they are not usually associated with any nearby
bottom feature to which one might attribute their origin, but are indeed often seen in quite deep
water.  In the nautical literature and charts, they are sometimes identified as “tide rips”.  In Arctic
and sub-Arctic regions, especially near the mouths of fjords or rivers flowing into the sea,
analogous waves of lower energy are known, dating back perhaps even to the Roman reports of
“sticky water,” but certainly a recognized phenomenon – dead water – since Viking times
[Ekman, 1904].

In the 1950’s and '60’s, during in-situ measurements of internal waves, it was noted that
they were accompanied by surface "slicks" [Ewing, 1950; Shand, 1953].  It was thought that
these slicks were due to natural surfactants that dampened the ultragravity and capillary waves,
constituting small-scale surface roughness.  In certain cases, however, it was noted that there
appeared to be regions of enhanced, (rather than reduced) surface roughness [Gargett and
Hughes, 1972].  Debate went on as to the cause and effect until theoretical analyses showed that
regions of both enhanced and reduced roughness accompanied the waves, with the roughened
region generally leading the smoother one because of modulations by the underlying internal
wave currents.  The dominance of one signature type over the other depended on the wind speed
and the strength of the internal wave currents near the surface.

With the advent of aircraft and satellite imaging sensors, a more Olympian perspective
became available from which to view the surface signatures.  Apel et al. [1975a] reported the
existence of solitons in the New York Bight based on ERTS (Earth Resource Technology
Satellite) imagery collected in August 1972 May 1973 and July 1973.  The visible wave packets
demonstrate the prototypical multiple oscillations, variable wavelengths and crest lengths; and as
later documented, reduced amplitudes toward the rear of the packet.  The analyses laid down the
basic characteristics of the internal waves in this area of the U.S. East Coast.  The wide-ranging
data from satellites soon showed analogous signals to exist at many locales around the world.
While these often differed among themselves in scale or in detail, at many locations, the wave
packets had strong topographical similarities to each other.  With the assistance of in-situ
experiments in the New York Bight, the Massachusetts Bay, [Halpern, 1970, 1971; Haury et al.,
1979] and in the Strait of Georgia [Hughes and Gower, 1983], the internal wave interpretation of
these surface signatures became solidified.

At approximately the same time, a theoretical understanding of the effects of the wave
currents on the surface wave spectrum grew, allowing more accurate and well-founded
interpretations of the underlying internal wave displacements to be made from the overhead
images.  It was realized that the quantity being sensed in the imagery was more nearly the
internal wave surface current gradients rather than the surface currents themselves [Alpers 1985].
The subsurface data showed that these waves had highly non-sinusoidal waveforms, at times
even approaching those expected of a train of isolated pulses moving at their own individual
speeds.  An interpretation in terms of solitary wave theory arose with the applications and
extensions of the Korteweg–de Vries formulations having proven to be quite adept at describing
the wave characteristics quantitatively.



A
n A

tlas of O
ceanic Internal Solitary W

aves (M
ay 2002) 

O
ceanic Internal W

aves and Solitons
by G

lobal O
cean A

ssociates
Prepared for the O

ffice of N
aval R

esearch - C
ode 322PO

4 Figure 1.  L
ocation w

here internal w
aves have been observed.  A

lm
ost all of the sites have been found in satellite im

agery.  L
ack of open-ocean sites reflects

paucity of data there.



An Atlas of Oceanic Internal Solitary Waves (May 2002) Oceanic Internal Waves and Solitons
by Global Ocean Associates
Prepared for the Office of Naval Research - Code 322PO

5

3.1 Global Occurrences
The remotely sensed images acquired during the quarter-century since the first glimpses

of oceanic solitons were obtained from the ERTS/Landsat-1 spacecraft [Apel et al.,
1975a,1975b; Sawyer and Apel, 1976] have allowed the construction of global maps of their
occurrence.  Figure 1 shows the locations of solitons observed around the world with a variety of
remote and in-situ sensors.  The majority of these sensors are synthetic aperture radars operated
by the United States, Canada, the European Space Agency, the USSR/Russia and Japan.  Indeed,
the SAR is the premier sensor for such phenomena, because of its sensitivity to small surface
roughness changes at ocean surface wavelengths of the order of the radar wavelength, as well as
its independence of cloud cover and solar illumination.  In addition, it is a quantitative
instrument because of control over such factors as frequency, phase, polarization, incidence
angle, power, and swath width, all of which are important in the observation of oceanic
phenomena

As the global maps show, solitary internal waves are widespread.  If the theories of their
generation and propagation are even approximately correct, then they should occur wherever the
combination of stratification, bathymetry, and current flow conspire to give the needed
conditions.  It is apparent that these conditions happen frequently in coastal regions, especially
during the summer months.  Under conditions of summertime stratification, they even extend to
sub-Arctic regions such as the coasts of Labrador [Fu and Holt, 1982], northern Norway, and the
Barents Sea and the Antarctic in the Weddel Sea [Levine et al., 1997].

Nevertheless, there are interesting and important exceptions, such as the apparent solitary
waves observed near the Mid-Atlantic Ridge north of the Azores [Apel, 1987], and in packets
seen with shipboard acoustic Doppler current profilers (ADCPs) northeast of the Bismarck–
Solomon Islands chain in the open South Pacific [Pinkel et al., 1997].  The Mid-Atlantic waves
could be due to the Gulf Stream extension (pycnocline depths near 600 m) flowing over the
Ridge (bottom depths near 900 m), and the Pacific Island solitons were probably generated near
one of the inter–island sills in the region.  However, there is a dearth of open-ocean SAR
imagery, so that it is difficult to say how frequently deep-water solitons occur.

4. A Descriptive Canonical Picture
From the body of work addressing soliton characteristics [Apel and Gonzales, 1984; Apel

et al., 1985; Liu et al., 1985], there has emerged a canonical picture of oceanic internal solitons
and their generation, propagation, and dissipation.  While any internal motions that are
energetically possible can (and do) occur in the sea, a very large percentage of the examples at
hand display the approximate attributes exhibited by the proposed canonical model.  The
mathematical description to be presented produces the dominant wave characteristics derived
from numerous observations, with the major exceptions being those having somewhat
pathological initial or final states.  Only multiple observations can decide on whether the
canonical model has the needed degree of verisimilitude.

In-situ observations of internal solitons can be made using almost any ocean
instrumentation capable of recording current, density, displacement of planktonic layers, or
similar quantities.  Because they are coherent processes, the waves can be recognized in
photographs of the sea surface, in multispectral radiometer images, in real and synthetic aperture
radar images, and in vertically viewing echo-soundings made in the water.  Even the eye at sea
level can detect the induced surface-wave changes as rough and smooth regions.  However, it has
been remote sensing, both satellite radar and optical, with their Olympian view that has brought



An Atlas of Oceanic Internal Solitary Waves (May 2002) Oceanic Internal Waves and Solitons
by Global Ocean Associates
Prepared for the Office of Naval Research - Code 322PO

6

Figure 2: Schematic of tidally generated solitons on the continental shelf.  Vmax T is
the internal tidal wavelength; c0T is distance between packet centroids.

about the realization of their widespread existence and provided the major impetus for their
study.  When enhanced by in-water measurements, it is possible to derive a more nearly three-
dimensional picture of the waves, especially if aided by theoretical models of both the internal
hydrodynamics and the surface wave–electromagnetic scattering processes.  The description of
the waves to follow is drawn from all these data sources.

4.1 Characteristics of Oceanic Solitary Internal Waves.
Internal solitons occur in stratified coastal waters as groups or packets of oscillations,

with the number of cycles varying from a very few to a few dozen, depending on age and
distance from generation point.  They are usually produced by tidal currents flowing normal to
the local bathymetry.  Such processes are statistically quite reproducible, given the same season,
the same phase of both the daily and fortnightly tides, and the bathymetry.  Typical mid-latitude
soliton packets form at the continental shelf break during the summer.  The wave groups are
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generated approximately every 12 hours during the spring tide phase of the fortnightly (14-day)
tidal current.  At the neap tide phase, they are often absent.  Seasonal and interannual variations
in density and larger-scale currents also play a role.

A given wave packet is usually characterized by several dominant features.  The
individual oscillations are nonsinusoidal, with predominantly downward displacements (i.e.,
depression IWs); the amplitudes are rank-ordered, with the largest at the front of the packet and
the smallest at its rear; the wavelengths and the crest lengths are also rank-ordered, with the
longest waves again at the front of the group; and the number of individual oscillations within
the packet increases as its age increases, with one new oscillation added per Brunt-Väisälä
period.  The Brunt-Väisälä or buoyancy period, describes the oscillation of a water parcel about
its equilibrium depth, and is proportional to the square root of the change in density with depth.
It is used as a parameter to express the strength of stratification in a fluid.  Additionally, the
maximum amplitude of the leading oscillations appears to be related to the magnitude of the
downward displacement of the pycnocline during the ebb (offshore) tidal phase.

A schematic of these features is shown in figure 2.  Here are sketched two individual
packets, the rightmost one having just been generated by offshore tidal flow at the shelf break
within the last few hours, and the leftmost one being about 12 hours older and having been
generated on the previous semidiurnal tide, and then propagating up onto the continental shelf on
the order of 25 to 35 km from its formative point.  This implies a phase speed of about 0.6 to 0.7
m/s, although what one means by “phase speed” needs a careful definition in terms of the
theoretical models

Both a vertical section of displacement and a horizontal plan of the wave crests are
sketched on Fig. 2.  The vertical section shows that the displacements are mostly negative, and
that the downward oscillations of the pycnocline are followed by a several-hour average
depression of the density interface to the rear of the oscillatory region.  A slow recovery of the
pycnocline then takes place near the trailing edge of the undulation.

Table 1.  Typical Scales for Continental Shelf Solitons

Packet Length
L (km)

Amplitude Factor
2η0(m)

Upper Layer Depth
h1(m)

Lower Layer Depth
h2(m)

Long Wave Speed
c0 (m/s)

1–10 -15 20–35 30-200 0.5-1.0

Maximum Wavelength
λMAX (m)

Crest Length
Cr (km)

Internal Tidal Wavelength
D = VT (km)

Surface Expression
Width  l1(m)

100–1000 0–30 15-40 100

Typical scales for summertime continental shelf internal waves are given on Table 1.  It
should be emphasized that these characteristics are canonical, and any individual realization of a
soliton packet can be expected to deviate from the ideal by significant factors.

Figure 3 shows a synthetic aperture radar image of four such continental shelf soliton
packets northeast of the Hudson Canyon off New York, generated during the previous 50 hours
of tidal action at the shelf break.  Such data, together with in-situ observations, have gone into
making up the canonical description of the wave field.

The proper view of these soliton groups is that they are oscillations of the leading edge of
an undulatory internal bore, or nonlinear internal tide on the shelf.  Both observational evidence
and numerical models of nonlinear hydrodynamics under these conditions show that the linear
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Fig. 3.  ERS-1 SAR image of the New York Bight taken on 31 July 1995.  Image is approximately 100 km on a side.
Four packets of tidally generated internal waves are visible north of the Hudson Canyon, which lies near the bottom
center of the image.  Distance between packets is set by 12 ½-h semidiurnal tidal period.  ©Copyright European
Space Agency, 1995

deep-sea barotropic tides (tides characterized by a water height change throughout the water
column) are transformed into nonlinear baroclinic tides (tides characterized by propagation of the
tide as an internal wave propagating along the thermocline) as they move up on the shelf.  Later,
after several tidal cycles of their existence, dissipative forces reduce the nonlinearities to small
values, so that near the shoreline, the tides are once again sinusoidal.

Soliton packets are also generated by tidal flow over relatively shallow sills or banks.
While the generation process is probably similar to that at the continental shelf break, the
subsequent evolution of the individual packets can be considerably different.  Instead of
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Figure 4.  (Upper)  SAR image of Mediterranean just east of Strait of Gibraltar, showing a large packet of solitons
propagating into the Alboran Sea.  The generation region is near the Camarinal Sill.  Dimensions 50 × 50 km.
Image © European Space Agency, 1994.  (Lower).  Simulation of soliton packet using dnoidal model with historical
observations of ρ(z) and U0(z), and initial amplitude derived from Fig. 5.
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Fig 5.  Echo-sounder profile of large soliton packet in the center of Tarife Narrows in Gibraltar, taken in April 1986.
The lead (leftmost) soliton shows considerable broadening, possibly due to higher-order nonlinearities at work there.
Double amplitude 2η ≅ 80-m. Solid vertical lines are densities from CTD casts, and dashed lines are relative east-
west velocity profiles from ADCP's.  [Farmer and Armi; Armi and Farmer, 1988]

encountering ever-decreasing water depths, the sill-formed soliton radiates into a deeper sea, and
is less controlled by bathymetry (although depths continue to play a role as long as they are
roughly less than the soliton wavelength).  The restrictions in the Strait of Gibraltar, i.e. the
Camarinal and Spartel Sills, are generation regions of great importance for the western
Mediterranean and regularly produce solitons with amplitudes of 50 to 100 m and wavelengths
of two to four km [Farmer and Armi; Armi and Farmer, 1988].  Similar situations occur in the
Sulu Sea in the Philippines [Apel and Holbrook, 1983; Apel et al., 1985; Liu et al., 1985], the
strait between Luzon and Taiwan [Hsu and Liu, 2000a; Hsu and Liu, 2000b], and the arcs of the
Andaman and Nicobar Islands in the eastern Indian Ocean [Apel, 1979; Osborne and Burch,
1980; Alpers et al., 1997].  In the western tropical Pacific, the pycnocline depths are in excess of
100 m, and therefore, these sill regions are sources of intense internal solitons whose amplitudes
can exceed 100 m and whose wavelengths can grow as great as 20 km.

Figure 4 shows a packet of solitons radiating eastward from the Strait of Gibraltar, having
been formed by intense westward tidal flow across the Camarinal Sill several hours earlier [Apel,
2000].  The image is from the European Remote Sensing Satellite ERS-1; at the bottom is a
simulation of the soliton displacement using the dnoidal model of Section 5.2.4.  An echo-
sounder profile from this region is shown on Fig. 5 [Armi and Farmer, 1988; Farmer and Armi,
1988].  Such packets reach at least 200 km into the western Mediterranean Sea and live for more
than two days before decaying toward background levels [Apel, 2000].  Figure 6 illustrates an
image of the Sulu Sea, obtained from the U.S. Defense Meteorological Satellite Program in
1973, showing five groups of solitons propagating over 500 km across the Sulu Sea between
Mindanao and Palawan Island in the Philippines [Apel et al., 1985; Liu et al., 1985].  Such large
waves are formed by intense (>3 m/s) tidal flow across a sill at the south end of the Sea, and
have amplitudes in excess of 100 m.

4.2 Generation Phase at the Continental Shelf Break and at Sills
There has not been much work on the generation phase of oceanic solitons, but such as

there is suggests that during the phase of the barotropic tide when off-shelf or off-sill flow is
occurring, a steep depression of the pycnocline develops on the deep-water side of the
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Fig. 6.  DMSP image of Sulu Sea, Philippine Islands, in April 1973, made in visible light.  Solar reflection shows
roughness modulations from five groups of large internal solitons generated at a small sill between Mindanao and
Borneo.  Amplitudes near 100 m, wavelengths between 2 and 20 km, phase speeds about 2 m/s. Figure courtesy of
U.S. Air Force
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Fig. 7.  Lee wave formation at the shelf break in the New York Bight, seen via 20-kHz echo-sounder.  XBT and
CTD casts confirm pycnocline depression.  June 1976.

bathymetry.  Figure 7 is an acoustic echo-sounder record from the New York Bight showing
such a depression taking place just beyond the 200-m isobath.  The plunging of the pycnocline
near t =1810 UTC has a full amplitude, 2η0 ≈  -45 m, and there is some evidence that undulatory
motion exists offshore of the break.  One theory of generation suggests that the operative process
is formation of a lee wave down-current of a sharp change of bathymetry [Maxworthy, 1979; D.
Farmer, personal communication, 2000].  Figure 8, from Georges Bank/Gulf of Maine [P. Wiebe
and T. Stanton personal communication, 1999] illustrates the lee-wave character even more
clearly, via depression of biological scattering layers sampled with high-frequency echo-
sounders.  Similar steep depressions of the pycnocline have been observed on the outgoing tide
at the Camarinal Sill just west of Gibraltar [Armi and Farmer, 1988; Farmer and Armi, 1988;
Wesson and Gregg, 1988] and in Knight Inlet in western Canada [Farmer and Armi, 1999; Farmer
and Smith, 1980].  Figure 9 shows observations of the evolution of the soliton packet made via
CTD casts in the Strait of Gibraltar.  The isopycnal, σθ = 28.0 kg/m3, plunges by over 100 m at
4.3 h, which time sees the onset of the undulatory bore.  Approximately five oscillations have
evolved by this point; other data to be presented ahead show that up to 30 solitons can develop to
the east of Gibraltar over some 50 h.  A several-hour depression of the thermocline with an
amplitude of approximately one-half that of the lead soliton exists to the rear of the packet.  Over
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Fig. 8.  Lee wave off north edge of Georges Bank, viewed with 200 kHz echo-sounder.  Summer conditions. Figure
courtesy Peter Wiebe and Tim Stanton.

Fig. 9.  Pycnocline depression in Tarifa Narrows in the Strait of Gibraltar as observed via the Advanced
Microstructure Profiler. Upper level currents ≤0.6 m/s to the east; lower level currents ≤0.4 m/s to the west.  Figure
courtesy of Wesson and Gregg (1988).



An Atlas of Oceanic Internal Solitary Waves (May 2002) Oceanic Internal Waves and Solitons
by Global Ocean Associates
Prepared for the Office of Naval Research - Code 322PO

14

Fig. 10.  Solitons SW of Hudson Canyon in New York Bight, 18 Jul 1992.  Nascent solitons are just being formed
very near to the 200-m shelf break (cf. Fig. 4.) and will propagate toward the northwest.  Original image ©
European Space Agency, 1992.
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Fig. 11.  (A) Photograph of Canadian ship Vector traversing packet of solitons in Knight Inlet, B.C. (B) Current
vectors and acoustic profile during height of tidal flow.  Ship direction is with current.  Solitons appear to have been
generated before release of downstream pycnocline depression.  [Farmer and Armi, 1999.]
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Fig. 12.  Soliton temperature excursions in summertime New York Bight during one day.  Spikes are individual
solitons; large groups are semi-daily tidal modulations.  The slow recovery of temperature following the peak
depression is typical of “solibore” behavior.  Data courtesy of J. Lynch et al. (Apel et al., 1997).

the remainder of the tidal period, the system recovers to quasi-equilibrium or perhaps more
accurately, to a quiescent state of internal displacements.  The entire 12-1/2 h cycle constitutes
the internal baroclinic tide in the region.

Figure 10 illustrates a segment of an ERS-1 SAR image of the New York Bight just south
of the Hudson Canyon, showing internal wave packets generated over the previous several tidal
cycles.  A nascent packet with one to two oscillations is seen forming near the center of the
image; its position is very close to the shelf break, at a depth of 200 m.  This demonstrates that
the generation process takes place very near to the shelf break.  At sills, it appears that generation
occurs at approximately the same point in the geography.

An alternative mechanism to lee-wave generation is the direct production of rank-ordered
solitons by shear-flow instability just up-current of the break/sill.  Evidence exists from Knight
Inlet, Canada, that near the maximum of tidal current, the velocity shear is great enough to excite
solitons directly [Fig. 11; Farmer and Armi, 1999].  Because of nonlinearity, their propagation
speed exceeds the instantaneous fluid speed, and they move against the current even during
maximum flow.  With the reversal of the tide, they accelerate and move with speeds that are the
order of the summed phase and current velocities.  It is thought that when the bartotopic tide
slackens, the pycnocline depression, trying to maintain its former velocity relative to the water,
may also slip up onto the shelf (or over the sill) and propagate as a more-or-less freely radiating
wave [Haury et al., 1979].  A more detailed examination leads one to the conclusion that the
soliton packets are actually the leading edge of an oscillating undulatory bore and that behind
them, there is a longer-term depression of the equilibrium pycnocline lasting for much of the
semidiurnal tidal period - a phenomenon termed a solibore by Henyey and Hoering [1997].
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Fig.13. Horizontal currents in direction of soliton phase propagation at 100 m depth in the Sulu Sea, P.I. spanning 10
+ days.  Locations at 83 km and 200 km from sill at Pearl Bank.  Semidiurnal, diurnal, and fortnightly modulations
are observed.  Amplitudes exceed 100 m peak-to-trough for fully developed solitons.  [Apel et al, 1985]

4.3  Propagation Phase
These kinds of processes may be repeated on each cycle of the semidiurnal tide, thereby

producing effects like the several packets seen in Fig. 5.  As time goes on, there are more and
more oscillations added to the packet and it lengthens out.  The distance between the packets is
the wavelength of the internal tide and the velocity implied by that distance and the tidal period
is the nonlinear velocity of the leading soliton, termed Vmax in the theory.  In-situ temperature
data from moored thermistors in the New York Bight (Fig. 12) show two such cycles and
illustrate the temporal behavior over more than a full diurnal period [Apel et al., 1997].  The long
thermocline depression is apparent in this figure as well.

Over still longer times, the effects of the fortnightly cycle come into play.  This is most
clear in Fig. 13, which shows data from the Sulu Sea [Apel and Holbrook, 1983; Apel et al.,
1985; Liu et al., 1985].  Here currents measured over approximately a ten-day period show
semidiurnal/diurnal/fortnightly modulations, with the solitons present at spring tide and absent at
neap tide.  Semi-diurnal/diurnal asymmetries in soliton amplitudes and numbers are also visible,
these arising from the mixed nature of the generating tides in the region.  Such behavior strongly
implicates the tides as forcing functions.  Osborne and Burch [1980] have made similar
observations in the Andaman Sea, west of the Malay Peninsula.

4.4  Dissipation Phase
It is in dissipation phase that the shelf- and sill-generated solitons differ the most.  In the

space beyond a sill, the soliton packets radiate and spread out, adding one new oscillation per
buoyancy cycle and moving more or less free of bottom effects.  There is some along-crest flow
that causes the observed increases in crest lengths, probably at the expense of the potential
energy stored in the trailing pycnocline displacements.  There are also volume dissipations that
appear to be more or less described by an eddy viscosity [Liu et al., 1985; Liu, 1988].
Measurements from the Sulu Sea imply lifetimes for the packets in excess of two days in deep
water.  Similar numbers are obtained from Gibraltar [Wesson and Gregg, 1988; Apel, 2000] and
are consistent with open ocean observations made northeast of New Britain [Pinkel et al., 1997].
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On the shelf, however, the waves suffer increasingly strong bottom interactions as the
water shoals.  Refraction due to both the shoaling depths and the (usually) decreasing pycnocline
depth strongly orients the packet crests along isobaths, retards their speed of advance, and erodes
their amplitudes.  Development of a benthic boundary layer also occurs and leads to
resuspension of bottom sediments and nutrients, often fertilizing the water column thereby
[Sandstrom and Elliott, 1984].  Scattering from depth inhomogeneities contributes to additional
attenuation.  There is some evidence of the onset of shear-flow instability and roll vortices in
very shallow water, of order 30 to 35 m in the New York Bight [Orr, personal communication,
1995].  In this regime, the soliton signatures have usually disappeared from images; in-situ
observations suggest there are also suspended sediments and reduced optical transparency in the
vicinity.

5. Theoretical Models
It is useful to first discuss the relatively simple first-order “quadratic” nonlinear soliton

model, which was advanced by Korteweg and De Vries in 1897 to account for Lord Russell’s
observations.  Since this original work, many additional solitary wave equations have been
derived and new solutions found; one of special interest is the so-called “cubic” KDV equation.
While there are undoubtedly physical applications for the newer theories, in the case of oceanic
internal solitons, the so-called KDV or modified/combined KDV theories appear more or less
satisfactory.  While we will discuss these two equations, the more arcane theories will not be
treated here, and we refer the reader instead to the review articles published in the last several
years [Ostrovsky and Stepanyants, 1989; Apel et al., 1998; Grimshaw et al., 1998].

5.1 The Korteweg-de Vries Equation
When the development and propagation of a group of solitons is to be described, it is

usual to resort to one of the “evolution” equations for KDV systems [Liu et al., 1985], which
must be solved numerically, given initial data.  Such an approach is reasonably successful if one
includes both radial spreading from the source region and eddy dissipation.  However, an
analytical model giving some of the same physics is still desirable.  We first discuss the model in
terms of a two-layer system for simplicity, but later, in its application to actual situations, we use
continuously varying vertical profiles of density and current.

In terms of separable solutions in x and z (neglecting the slow variations in the along-
crest y-coordinate), solitons can be described by a product of (a) solutions to the weakly
nonlinear Korteweg-de Vries equation for the traveling wave amplitude, A(x, t), and (b) the
eigenfunctions of the Taylor-Goldstein equation for the vertical structure function, Wk,n(z).  Here
k is the horizontal component of wave vector and n is a vertical mode number.  This structure
function is discussed below, with the separability issue taken as given.  Because the solutions
involve both nonlinear and linear oscillations, the usual KDV limit of infinite wavelength,

0→k , is not taken; the oscillatory solutions have finite wave numbers.  This is different from
the sech2(x) solution, for which k ≡ 0, and is numerically important as well.

The form of the total solution for the amplitude of vertical excursions of the pycnocline,
η(x,z,t), is taken as
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where η0n is the amplitude for internal mode n and the sum is over the vertical modes present.
The Korteweg-De Vries equation for mildly nonlinear waves in shallow water is

applicable to stratified fluids if (1) the ratio of the amplitude η to the upper layer depth h1 is such
that η/h1 << 1 and (2), the wavelength is long compared with the upper layer depth: [h1/∆]2 << 1,
where h1 is the upper depth of the two-layer model and ∆ the horizontal scale factor for soliton
width.  Of the two restrictions, the first is the more difficult to maintain in nature and typically
this quantity is only slightly less than unity.  In such a case, higher-order theory is called for.  A
review of past laboratory results for nonlinear waves [Keulegan and Carpenter, 1961; Koop and
Butler, 1981; Segur and Hammock, 1982; Kao et al., 1985] suggests that the next-higher-order
solution, while matching the waveform data somewhat better, makes only small changes in
speed, etc., so that the dominant behavior is captured by the KDV theory.  The treatment of the
cubic KDV equation is deferred to the next section.

The quadratic one-dimensional Korteweg-de Vries equation can be written as
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where A(x, t) gives the (normalized) vertical displacement of an isopycnal surface from its
equilibrium level, and α, γ , and c0 are so-called environmental coefficients describing
nonlinearity, dispersion, and long-wavelength phase speed, respectively.  Note that the long
wave speed c0 has been factored out of the usual definitions of α and γ , which allows their
convenient interpretation in terms of characteristic lengths.  It is also worth noting that the
dispersion term involving γ Axxx is itself a long-wave approximation, valid only when the actual
wave number k is small compared with 1/ (γ 1/2).

5.1.1 The Structure Function
Second-order differential equations govern the vertical structure function Wn(z).  In the

case of fully nonlinear solitons moving with no background current, the limit 0→k , is usually
taken, and the equation for the (linear) vertical structure function is simply
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where the Brunt-Väisälä or buoyancy frequency N(z) is related to the density gradient via

dz
dg

zN
ρ

ρ
−=)(2 (4)

However, this limit is not appropriate for the finite-k waves of the cnoidal/dnoidal type
oscillatory solutions, but instead, the full Taylor-Goldstein equation for linear internal waves
must be used.  At the same time we generalize to allow for a streaming velocity (i.e. current)
U0(z).
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The modified Taylor-Goldstein equation for the eigenfunction Wk,n (z) is then where vertical
variations in the buoyancy frequency, N(z) and horizontal mean current velocity U0(z) are
allowed  The wave frequency eigenvalue is ωn for mode n.  By allowing k to vary, the dispersion
relation for the waves, ωn  = ω(k) may be mapped out.  Alternately the equation can be solved for
eigenvalues of the phase speed, cn = cn(k) = ωn / k, where cn →  c0n as 0→k .  (It should be
noted that higher-order KDV approximations might require that the vertical eigenvalues Wk(z)
should depend on x as well.  We will not tread that path here.)  With the specification of upper
and lower boundary conditions, this becomes a second-order Sturm-Liouville system.  We
impose rigid-lid boundary conditions at the surface, z =0, and at the bottom, z = -H; in this case,
Wk,n(z)is then quantized into an integral number, n, of vertical “half-wavelengths.”

Equation (5) is an extraordinarily rich and complicated one, with first and second-order
poles located at ωn = )( critz0Uk ⋅ , indicating the possibility of critical levels or resonances in
the fluid at z = zcrit.  The term involving U''0(z) (the vorticity gradient) and its denominator
change sign (and the equation thereby changes its properties) through the water column with
daunting complexity.  Additionally, shear-flow instabilities may occur if the Richardson number
drops below 0.25 somewhere in the water column.  Here the gradient Richardson number is
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where  02
1 U×∇=ϖ  is the angular rotational velocity of a fluid with surviving vorticity

component ζy = dU0/dz.  Lindzen and associates have studied unstable shear flow effects in such
fluids and have presented a rather clear picture of the requirements for instabilities to exist [Orr,
1907; Lindzen, 1988].  Lindzen demonstrates that, contrary to the view of Booker and Bretherton
[1967], it is growth, rather than attenuation, that is possible near critical levels, depending on
geometric and dynamic quantities.  As a consequence, it should be noted that for short-
wavelength waves, the phase speeds at which instabilities may develop are quite low, and even a
modest background shear velocity can result in singular levels in the fluid, most usually located
near the surface where wind-driven currents are the most intense [Apel, 1999].

There is experimental support for the use of the finite-k relationship, Eq.(5), in that KDV
environmental parameters derived from those eigenfunctions yield improved propagation
characteristics over the case for k =0.  There is also experimental evidence that small solitons can
be unstable against shear flow and develop into large, finite-amplitude waves rather than into roll
vortices, as is the case with linear internal waves.  Both Orr and Farmer and Armi privately
report observations of shear-flow-induced vortex patterns in solitons, apparently without the
concomitant destruction of the packet.

The TG equation can be modified to include effects of the Earth’s rotation, which is
important because at mid-latitudes, internal tidal periods are close to the Coriolis period.  The
resultant equation is more complicated and the solutions are altered, but mainly at very low
frequencies.  There the linear case shows inertial oscillations propagating mainly in the vertical,
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and one would expect the nonlinear case to be somewhat similar.  For an individual wave packet
having periods of order 30 min, the effects are small.  For several packets, the issue becomes
more important.  The rotational KDV equation is modified as well, with the differential order
being raised by one and by the inclusion of a term given by (f 2η)/2c, where f is the Coriolis
parameter [Ostrovsky, 1978; Ostrovsky and Stepanyants, 1989].  Clearly, the present model is
inadequate to handle rotation.  Work on this is reserved for the future.

5.1.2 Environmental Coefficients
The basic environmental parameters describing the medium are the long-wave linear speed c0,
the dispersion factor γ1/2 characterizing the scale over which a quadratic approximation for phase
speed holds, and the quantity α-1 setting the maximum scale of the finite-amplitude nonlinearity.
The phase speed c is the eigenvalue for the Sturm-Liouville problem above, and for long waves
is approximated by the quadratic relationship

)1()( 2
0 kckc γ−≅ (7)

This clarifies the meaning of c0 as the eigenvalue at k =0, and γ as the coefficient in a quadratic
expansion of c(k).  This expansion also illustrates the limitations of the shallow-water theory and
the dispersion operator, γ Axxx.  Integral dispersion operators covering a wider range of depths
have been advanced by several authors [Benjamin, 1966; Joseph, 1977; Kubota et al., 1978].

The coefficients α and γ can be evaluated from the integral relations given by Eqs. (9) to
(11) below.  However, their two-layer equivalents are listed first in order to provide an
understanding of the factors controlling them, which are the upper layer thickness h1, the lower
layer thickness h2 = H - h1, and the density contrast,. ∆ρ /ρ across the layers. F or the two-layer
fluid the environmental parameters are very simply
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Note that if h1 < h2, then α < 0.  Thus a thin upper layer results in downgoing displacements, for
which η < 0.  This is the usual case in the ocean.  When h1 = h2, the nonlinear coefficient
vanishes and a higher-order KDV equation must be used.  When the lower layer shoals to the
point that h1 > h2, the sign of the displacement reverses and the solitons become upgoing.  There
are indications from remote sensing that such occurs in shallow water [Liu et al., 1998], although
this also usually happens close to the point where strong bottom interactions take place.

In the case of a continuously stratified fluid, more complicated integral expressions must
be substituted for these formulas.  There are several versions of the integrals in the literature
[Benny, 1966; Lee and Beardsley, 1974; Maslow and Redekopp, 1980; Grimshaw, 1981;
Suvorov, 1981; Liu and Benny, 1981; Rocklift, 1984], differing significantly among themselves
both theoretically and numerically, especially when shear flow is included.  These have been
informally reviewed by G. Watson [private communication, 1991].  For reasons of seeming
mathematical rigor, the author (JRA) has chosen the formulation of Liu and Benny [1981].
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In the last formula, hc is the depth of a matching-inner-and-outer-expansion of the eigenfunction,
and is typically several times the depth of the maximum value of Wk(z).  All of these depend on
the suppressed modal index as well.  In general, numerical solutions for Wk,n(z) using
continuously varying density and current profiles are required, since analytic solutions are
available only for layered models or highly unrealistic analytical ones.

Because of the considerable differences found between the forms published in the
literature, the numerical values of these coefficients must not be viewed as rigorously obtained.
Additionally, under conditions wherein density and velocity profiles vary rapidly in the
horizontal, or change under the influence of the solitons themselves, it is not always clear what
the effective value of α , especially, should be.

It is important to note that because of the cubic factor in Eq. (9), α is very sensitive to the
form of the structure function and its derivative, e.g., to the differences in the layer thickness,
For example, if an upper layer isopycnal is displaced downward by a negative-going soliton or
by the trailing thermocline depression, and at the same time a measurement is made of the
density profile, an overestimate of the upper layer thickness will be obtained that is equal to the
unperturbed layer depth plus the instantaneous soliton amplitude. If now a sequence of density
profiles containing mainly down-going solitons is averaged over time, the result will be an
overestimate of the average upper thickness as well as an underestimate of the lower thickness,
resulting in a possibly bad value or even an incorrect sign for α .  From numerical evaluation, it
has been found that the multiplicative parameter αη0 sensitively determines the number of
solitons in a packet, and that a more nearly correct estimate of á (and hence the total number of
solitons generated) may be derived by assuming that the proper layer thickness are those
obtained from a pycnocline depth that is disturbed by the wave in the amount 2η0, rather than the
undisturbed depth.

Figures 14(a) through (f) show how solutions for the structure function proceed.  Figures
14(a) to (c) illustrate an undisturbed density profile (Cournelle, personal communication, 1999);
a B-V profile, and two mean velocity profiles for the central Strait of Gibraltar during the spring
(Watson and Robertson 1991).  Figures 14(d) to (f) show the eigenfunctions for the first mode,
the linear phase speed, and the dispersion relations for this mode as well.  The long-wave
eigenvalue c0 is the intercept of the phase speed curves at the k-origin, and this is a fundamental
quantity for the KDV solutions.  The presence of velocity shear only slightly changes the Mode 1
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Figure 14.  Solution procedure for the structure function.  a) Typical undisturbed Density Profile for Gibraltar b) derived Brunt-Väisälä frequency N(z) c) current
flow profile d) Normalized vertical eigenfunctions (mode 1 & 2) for 2π/k0 = 900 m, H = 675 m for density and velocity profiles shown e) Phase Velocity f)
Dispersion relations.  The red curves show the results with current (U > 0).
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eigenfunction, but substantialy modifies Mode 2 (Fig.14(d)).  The background velocity also
bodily advects the wave packet at a speed that is vertically weighted in some fashion by the
structure function (Fig. 14(e)).  This effect adds to the intrinsic phase speed and moves the
centroid of the packet forward at the calculated value c0 p 1.7 m/s. In the absence of a mean
current, c0 is close to 1 m/s.  Thus, the observed frequency is Doppler-shifted to high values.

5.2 The KDV Solution

5.2.1 Hyperbolic Secant Profile
If the shallow water approximation holds, then the prototypical analytical solution for a single
soliton pulse is
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where V is the nonlinear phase speed and ∆ is a measure of the width of the squared hyperbolic
secant pulse and is itself a function of η, α and γ.  The amplitude is written as 2η0 to facilitate
comparison with the oscillating solutions ahead.  For single solitons, the invariant shape of the
KDV solution and its dependencies on the amplitude and the environmental parameters have
been surprisingly well-verified both in the ocean [Apel et al., 1985; Liu et al., 1985; Ostrovsky
and Stepanyants, 1989; Apel et al., 1998] and in hydrodynamic tanks [Keulegan and Carpenter,
1961; Koop and Butler, 1981; Segur and Hammock, 1982; Kao et al., 1985].  Figure 15 shows
the shape of the classic soliton solution in a stratified fluid; the figure serves to define the parameters
of the single-pulse model.

For this model, the characteristic width A is related to the amplitude and environmental
coefficients via
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For moderate–to-large-amplitude waves, this relationship is in general obeyed, but is
sometimes found to be only very approximately correct [Apel et al., 1985; Kropfli et. al 1999],
presumably because of higher-order non-linear effects (see ahead).  Nevertheless, it relates the
characteristic scale ∆, which is often directly observable in images or from in-situ data, to the
vertical excursion, η0, which is not.  One requires values of α and γ in order to obtain an
amplitude measure, but these can often be estimated for the geographical location and season
from historical data.

The nonlinear speed V can be similarly estimated via the relationship derived from KDV
theory,







 += 00 3
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Often two or more tidally generated packets are visible in a wide-swath image, and from
the knowledge of tidal periods, T p 12½  and 25 h, estimates can be made of the maximum
nonlinear velocity Vmax from the interpacket separation: D p VmaxT.  These velocities range
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Figure 15. Classic sech2(x) profile for KDV soliton at two different times, viewed in coordinate system moving with
longwave linear speed, c0.

from approximately 0.5 to 2.0 m/s under usual conditions, for which inter-packet separations are of
order 25 to 100 km.

The authors believe that the KDV theory captures most of the variance in the
observations and that the higher-order refinements, while interesting and useful, do not negate
the utility of the Korteweg-de Vries formulation.

5.2.2 The Cnoidal Profile
While the single-pulse KDV soliton is mathematically simple, one finds that in place of

single pulses in the ocean there are almost always packets consisting of several oscillations of a
quasi-periodic nature, with decreasing wavelengths, crest lengths, and amplitudes occurring from
the front to the rear of the wave group; the data of Section 4 demonstrate this clearly.  Now
Korteweg and de Vries also published a nonlinear periodic solution in their 1898 paper, the so-
called cnoidal wave involving the Jacobian elliptic function, cns(x).  This function has a free
parameter, s, that establishes the degree of nonlinearity: 0 ²s2² 1.  The KDV cnoidal solution is
given by
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Figure 16: KDV periodic cnoidal solution showing three cycles of uniform solitons with nonlinear parameter s2 =
0.98.
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Where ηm and η0 are amplitude factors and k0 is a wave number.  Figure 16 shows the cnoidal
waveforms for s2 = 0.98 and defines several of the lengths.  When s →  0, cns(x) →  cos(k0(x -
Vt)/2) and the linear oscillatory solution is recovered.  As s →  1, cns(x) →  sech(x), and the
individual oscillations have stretched infinitely far apart, leaving the single-pulse soliton.  Thus

)(2 xcn s  is a generalization of the better-known sech2(x) solution, but also reduces to the

sinusoidal wave with small nonlinearity.  The so-called “stretched wavelength,” λ, the distance
between successive minima or maxima, is given by
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where K(s) is the complete elliptic integral of the first kind.  The important wave number k0 is
related to ∆ for the single-pulse soliton (and in turn to α, γ, and η0) and is given by
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The wave number k0 plays a dual role in the cnoidal function.  On one hand, it gives the
characteristic width of each oscillation of the cnoid, which is related to the KDV soliton width as
k0/2 =1/∆, a quantity that is constant throughout the wave packet.  On the other hand, it is also
the wave number of the linear cos(k0x) solution at the rear of the packet.  Thus, it is a scale factor
that remains valid throughout the entire range of x, from fully nonlinear to fully linear, and will
constitute a very important quantity in the analysis of observational wave packets ahead.

However, the cnoidal wave packet model has several ad-hoc assumptions associated with
it, and additionally there is no clear way to allow it to develop into a propagating, evolving
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model with the possible exception of the approach advanced by Osborne [1995].  Most
importantly, it does not contain the pervasive characteristic of observed soliton packets
mentioned above, e.g., a sharp onset and a long-term trailing-edge depression of the isopycnal
surfaces behind the wave group.  These deficiencies of the cnoidal model have resulted in the
adoption of another solution to the KDV equation that I (JRA) term the “dnoidal” solution

5.2.3 The Dnoidal Profile
Gurevich and Pitaevskii (1973 a, b, 1990) have utilized a relatively unknown solution to the
KDV equation to describe collisionless shock waves in plasma, a solution that is given in terms
of another of the Jacobian elliptic functions, dns(ξ).  (The “collisionless” property is due to the
fact that solitons, like collision-free particles, interact with each other with no net change in
energy.)  The dnoidal function is also an oscillatory quantity that approaches sech(ξ) as the
parameter s2 →  1, but in contradistinction to cns(ξ), approaches unity as s2 →  0.  Now there is a
trigonometric relationship between dns(ξ) and cns(ξ), viz.:

)()1()( 2222 ξξ ss cnssdn =−− (18)

Then for constant s2 , the KDV cnoidal solution can readily be written in terms of the dnoidal
function.  However, in the solution by Gurevich et al. [1973], )(2 ξsdn  is used with an additional
relationship that is produced by allowing a slow variation of s2 within the wave packet, as well as
by imposing theoretical limits on the range of the independent variable ξ .  The resultant solution
then takes on significantly different properties from )(2 ξscn .  It turns out that this form of the
dnoidal function is particularly well adapted to model the response of a fluid to an initial sharp
impulse that induces “ringing” along its leading edge.  The )(2 ξsdn  model possesses the all-

important properties of a rapid onset (the shock front), the development of additional
oscillations, increases in packet lengths as space and time go on, and a long-term depression of
the trailing end of the packet.  As was discussed above, this trailing depression is an important
property of naturally occurring internal soliton packets.

Apel [2001] contains a short derivation of the Gurevich and Pitaevskii (GP) solution.
The basis for the derivation can be found in their papers in JETP, although in somewhat different
form, and the reader is directed to these references for its justification.  In a more recent paper,
Gurevich and colleagues (1990) amplify on the properties of the solution.

Here we are interested in its application to the oceanic soliton case, and the Gurevich and
Pitaevskii formulation, originally done for plasmas, has been modified to apply to the slow
oscillations of an uncharged, stratified, streaming fluid such as the ocean.  This primarily
consists of redefining the KDV parameters to apply to that case, and generally follows the work
of Benjamin [1962, 1966] and Benny [1966].

For initial conditions approximating an impulse exerted on the fluid at (x, t) = 0, the
periodic )(2 ξsdn  soliton solution to the Korteweg-deVries equation is given by
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Here η0 is an amplitude factor (to be determined by external factors); k0 is a wave number
dependent on the KDV environmental parameters; V is the nonlinear phase speed; and ηm is a
quantity to be determined by other considerations.

In their 1990 paper, Gurevich et al. claim that Eq. (19) is the general solution to the KDV
equation, (2), and cite their 1973 papers as proof.  The trigonometric relationship between dn and
cn, Eq. (18), is such that this solution would have the same generality as Eq. (12); but as will be
seen below, its behavior is clearly different when the initial conditions and the variations in s are
imposed.

The important theoretical relationship between the KDV environmental parameters and
the short-wavelength wave number k0 now takes the form
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This allows one to estimate the displacement amplitude, knowing k0,α, and γ from field data, for
example.  (There is clearly a problem with Eq.(20) as α →  0.  Then the cubic KDV must be
invoked.)  In addition, the nonlinear phase speed at the front of the packet, which is given by
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can then be estimated from these data as well.  (The second expression above shows the dnoidal
phase speed approaches the classic nonlinear speed for an isolated soliton with amplitude 2η0)
These equations are exact theoretically but work with varying degrees of accuracy in practice,
probably because of the non-inclusion of higher-order nonlinearities.

The nonlinear parameter s2 remains unspecified at this point and must be established by
other means.  Where the KDV cnoidal solution simply assumed it is a constant related to the
amplitude parameters.  Gurevich and Pitaevskii [1973a, b] allowed it to vary slowly in order to
construct a packet, so that s = s[τ(x)], as obtained from rate equations for the slower variations.
In terms of a space-time ratio, τ, which is defined only over the packet extent, their solution for
s2 is given implicitly via
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Here K(s) and E(s) are complete elliptic integrals.  (The usual notation for the argument of these
integrals is m = s2 and K(m) =K(s2).  We retain the present notation for conformity to the GP
references.)  The transformation of variables used in arriving at this relationship has mapped the
semi-infinite half space, x - c0t ≥  0 to a finite interval in τ defined by  -1 ≤  τ ≤  2/3, for 0 ≤  s2 ≤
1; this interval thereby establishes the packet length.  Since τ is a space-time ratio, the packets
can differ in their actual wavelengths, number of oscillations, etc. in physical space while
remaining confined to this interval.  Also, τ = 0defines that point in the packet traveling with the
long-wavelength speed c0, which is effectively the centroid of the wave group; from the range of
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Figure 17  (Upper) Theoretical behavior of normalized parameters in dnoidal solution, vs t, using Eq. (12) for s2.
Beyond τ = 2/3, s2 ≡ 1. (Lower) Normalized amplitude at τ' = 289. Beyond τ = 2/3, the classic sech2(τ) solution
extends wave into evanescent region.

τ, this is at a distance of 2/5ths of the packet length from the lead wave.  In physical space it is at
a distance x = c0t from the origin.  The coordinate origin is placed at the position of the impulse
application - the shelf (or sill) break - and t =0 is taken as the time of reversal of the tidal flow at
the break and the release of the downstream depression (or generation of the shear instability).

The direct solution for s2 = s2 (τ) from the non-algebraic Eq. (12) is difficult; on the other
hand, given s, the inverse solution τ =τ (s2 ) is simple [Gurevich and Pitaevskii, 1973a, b].  A
graphical inversion as a function of τ is shown on Fig. 17, where it may be seen to have the range
and domain stated.  Also in Fig. 17 this figure are shown the variation in normalized wave
number, k/k0 and the amplitude averaged over a wavelength, 0ηη .  These are given by

)(20 sKk
k π
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and
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Both approach zero logarithmically at the front of the packet and unity at the tail.  Thus it may be
seen that at the front of the packet,

τ →  2/3, s2 →  1, k →  0, V →  Vkdv

where Vkdv is the fully nonlinear velocity of the KDV solution, while at the rear of the packet,

τ →  -1, s2 →  0, k →  k0, V →  c0

The packet centroid moves with the long-wave linear velocity c0.  This characteristic is useful in
interpreting observational data containing multiple packets.

Figure 17 also illustrates the form of the )(2
)( ξxsdn  amplitude function of Eq. (19), using

Eq.(22) and normalized variables.  The function clearly shows waveforms that are non-
cosinusoidal near the front but which approach linear cosinusoidal shapes at the rear.  The
diminution of amplitudes and wavelengths are apparent as well.  It also demonstrates that the
constant trailing amplitude of η0, or one-half the peak-to-trough amplitude of the leading wave,
is due to the properties of the dnoidal function when taken together with the s2 variation; it is
here that the dns(ξ) and cns(ξ) solutions differ the most.  The interpretation of the downward-
displaced tails in Figs.7 and 9 can then made in such terms.  Thus, this solution has many of the
basic properties observed in internal solitons in the ocean.

As time advances, the number of oscillations increases, one per buoyancy period.  Some
soliton theories regard this number as being determined by the “strength” of the “potential well”
embodied in the downward displacement of the pycnocline, with any left-over energy leading to
a linear dispersive tail at the rear of the generation region (see Dodd et al. 1982, for example).
The present theory gives an alternative viewpoint, suggesting that a continuous diminution of
wave nonlinearity takes place from front to back.  The distance between successive solitons, the
so-called stretched wavelength λ, is, from Eq. (23),
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Here λ0 = 2π / k0 is the wavelength at the trailing end of the packet, and is an important quantity
in interpreting field data in terms of the model.  The period between successive passages of
individual oscillations is
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both of which decrease toward the rear of the packet.
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It should be noted that the dnoidal solution (19) is not accurate at extremely short times,
during the very early response to the imposed shock.  Now near the point τ =2/3, one has s2 →
1; the solution ahead of that distance may then be obtained by appending one-half of the
waveform of any of the fully nonlinear KDV solutions (including solutions of the cubic KDV
equation, for example).  If the appended waveform is that of the sech2(τ)profile, the results are as
shown on Fig.17.  It is thus seen that at τ =2/3, the nature of the solution changes from
oscillatory to evanescent, much as does the wake of a ship at the Kelvin caustic, which is also a
shock-like phenomenon.

5.2.4 The Dnoidal Model
The dnoidal model is an extension of the dnoidal solution that more closely simulates observed
solitons and their associated nonlinear internal tides, with the expectation of improved fidelity,
given the correct numerical choice of parameters (Apel 2001).  By including the vertical structure
function Wk,n(z) and a long-wavelength modulation function I [(x-c0t)/(c0Tl)]

that describes the depressed trailing edge of the internal tide on the continental shelf and its
attenuation, the model may be written as
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where the sum is over those normal modes excited but where the modal index has been
suppressed.  The internal tide recovery function I is taken to be a hyperbolic tangent with a
horizontal scale c0Tl, of the form
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This function is attached to the dnoidal solution at a distance χ �from the centroid and moves
toward increasing x at the long-wave linear phase speed c0.  The exponential attenuation function
describes the effect of dissipative forces at work during the propagation of the packet (see
Section 4.4).  Numerical values from the Sulu Sea and Gibraltar imply a packet lifetime,
T�1/(αattV) of roughly two days.  Figure 18 shows the space and time evolution of a dnoidal
wave packet and illustrates, in moving coordinates, the increase in number of solitons and their
wavelengths, the lengthening of the packet, and the attenuation of the amplitudes that are part of
Eq.(22).

The parameters χ and Tl are chosen to give agreement with observation, with c0Tl giving
a spatial scale to the hyperbolic tangent function, and χ establishing a horizontal displacement of
the midpoint at I =1/2 from the packet centroid.  The recovery function is attached to the centroid
of the dnoidal wave packet at the position x = c0t + χ and moves with the speed c0.  Parameter
values for the scaling of I(x, t) are typically Tl p 2 h and χ ≈  0-4 km.  A simple attenuation
function is used to diminish the amplitudes.  Its form is exp [ -a (x - xa)] where xa =1 km, and a
p 2 × 10-2 km-1 , values that derive from experience in the Sulu Sea and elsewhere.
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Figure 18.  Dnoidal model evolution over one diurnal tidal period. Model modifies solution by includes the vertical
structure function, attenuation, and recovery of the trailing edge to small values later in packet. One cycle is added
each buoyancy period.

This relationship has been applied to data from the field program entitled “Shallow Water
Acoustics in Random Media” (SWARM–discussed elsewhere in this book); to data from several
other field programs; and to more casual observations of internal solitons via remote and in-situ
sensing.  In general, reasonable-to-good agreement is obtained between theory and observations.

5.3 Combined/Modified KDV Equations
When the wave amplitude exceeds the upper layer depth, a higher-order expansion is necessary.
The combined KDV relationship then becomes
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Figure 19.  “Kink-antikink” solution for solitons with cubic nonlinearity and varying degrees of the nonlinear
parameter, ν.  The dotted curve is the classic KDV soliton. Figure courtesy of T. P. Stanton and L. Ostrovsky
(1999).

where the coefficient of the cubic term is α3 [Lee and Beardsley, 1974; Ostrovsky and
Stepanyants, 1989].  While the sign of α depends on the layer depths (cf. Eq. (3)), it turns out
that α3 is always negative.  For a two-layer fluid α3 is
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The environmental parameters c0, α and γ are the same as those in the  weakly nonlinear KDV
equation.  In this case, the CombKDV equation is fully integrable, with the displacement being
in the form of a kink-antikink pair of solutions involving hyperbolic tangents:
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Here ν is a free parameter measuring the degree of nonlinearity and ranges over (0, 1).  The
nonlinear speed V3 and characteristic width ∆3 are different from their KDV equivalents; and are
given by: [Ostrovsky and Stepanyants, 1989; Stanton and Ostrovsky, 1999]
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It is interesting that the maximum amplitude of the kink,
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η = (33)

is limited to α /α 3, i.e., there exists a theoretical limiting amplitude to solitons described by the
modified KDV equation.  A plot of the CombKDV waveform is shown on Fig. 2 for a number of
values of ν [Stanton and Ostrovsky, 1999].

Solitons in the ocean sometimes show evidence of small cubic nonlinearities in the
leading pulse but rarely in the trailing smaller-amplitude oscillations.  However, there are well-
known exceptions in Knight Inlet, a fjord-like body in British Columbia, [Farmer and Smith,
1978, 1980; Henyey and Hoering, 1997], and in the Pacific Ocean off the Columbia River,
Oregon [Stanton and Ostrovsky,1999; Kropfli et al., 1999].  These solitons are very strongly
nonlinear and require the full theoretical apparatus of Eq. (29).

6. Summary
It has been nearly four decades since the first in-situ observations were made of

nonsinusoidal waveshapes for internal waves on the continental shelf [LaFond, 1962].  However,
it has only been since satellite images have been acquired in sufficient quantity that the global
extent and the recurrency of the waves have been appreciated.  In this regard, the accumulation
of some ten years of SAR data from ERS-1/2 and Radarsat-1 has added greatly to the limited but
tantalizing pictures from Landsat [Sawyer and Apel, 1976] and Seasat [Fu and Holt, 1982].

The case studies in the Atlas have helped to show the observed dominant characteristics
of internal solitons in the ocean.  They are:
• The solitons are ubiquitous in the ocean, appearing wherever the proper combination of

density gradient, current flow, and bathymetry occur.
• The generation process launches undulatory internal bores on each semidiurnal tide, with

significant modulations on diurnal, fortnightly, seasonal, and semiannual time scales.
• The solitons are produced via lee wave formation, shear flow instability, or scattering of

barotropic modes into internal baroclinic modes at locales close to rapidly shoaling depths
that protrude into the pycnocline.  The exact mechanisms are not yet clear.

• They occur in packets, usually rank-ordered, with the largest, fastest, greatest-wavelength,
and longest-crested oscillations appearing at the packet front, which then slowly decay to
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smaller-amplitude, reduced-wavelength, and shorter-crested oscillations at the rear.  The
orientation of packet wavefronts in the horizontal plane is controlled by refraction and to a
lesser extent in narrow straits, by diffraction.

• The solitons are the leading edge of an undulatory internal tidal bore generated by tidal flow
over banks, sills, and continental shelf breaks.  The distance between successive bores is the
internal tidal wavelength on the continental shelf.  As the packet approaches, each bore is
characterized by a sharp drop in pycnocline depth approximately equal to the soliton
amplitude, a sequence of nonlinear oscillations that decrease in amplitude from front to rear,
and a slow recovery of the depression over several hours.  Wavelengths are longest at the
packet front and shortest at the rear.  All wavelengths increase logarithmically as time goes
on, due to the higher speeds of larger solitons.

• They are dissipated by radial spreading, bottom interactions, instability, and fluid turbulence.
Lifetimes are the order of a few days in the open sea and a day or so on the shelf.

KDV theory, in the form of the quadratic KDV and the cubic combKDV equations,
works surprisingly well to describe internal solitary waves in the sea when measured by its
ability to simulate the local two-dimensional hydrodynamics of soliton packets.  While nature is
much more disorderly than mathematical theory, nevertheless internal solitons are among the
most coherent and reproducible phenomena in the sea, barotropic astronomical tides perhaps
excepted.  Since tidal currents are one ingredient in the recipe for production of solitons (the
others being stratification and variable bathymetry that perturbs the density structure), it is not
surprising that solitons follow the tides and the seasons.  Furthermore, their very coherency
allows detailed comparisons between observation and models in a satisfying way.

The characterization of soliton packets as oscillations on the leading edge of the
nonlinear internal tide is more recent [Gerkema, 1994, 1996; Apel, 1998].  Viewed from this
perspective, the solitons can be regarded as part of the response of a fluid to an imposed internal
shock, that is, they are a “ringing” of the leading edge of a super-Froude shock front moving
across the ocean and repeated every 12 ½ hours.  This front transports mass and momentum in
both its mean and its fluctuations.  The other part of the response lies in the recovery from the
initial downward displacement of the density field during the remainder of the tidal cycle.  The
inclusion of Coriolis effects, which has not been mentioned here, has an inhibiting influence on
the onset of oscillations [Gerkema, 1994].  Differences and similarities between solitons
generated at shelf breaks and sills are pointed out, with the water depth in the far field being
important to the lifetime of the waves.  Packets generated at sills appear to be, on the average,
more energetic than those at shelf breaks, and to take on more of the characteristics of solibores
[Henyey and Hoering, 1997]; this is probably related to the intensity of tidal flows near sills.
The exact mechanisms for generation are not yet established, but the two main hypotheses, lee-
wave formation and barotroic–baroclinic scattering, seem to happen at various locales.  Neither
are the relative magnitudes of the various dissipation mechanisms known.  This difficult problem
is also a first-order research issue and important to resolve because of its impact on oceanic
optical opacity, nutrification, and bio-stimulation.
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